Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611801

RESUMO

Inflammation is an essential contributor to various human diseases. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a citrus flavonoid, can be used as an anti-inflammatory agent. All the information in this article was collected from various research papers from online scientific databases such as PubMed and Web of Science. These studies have demonstrated that diosmetin can slow down the progression of inflammation by inhibiting the production of inflammatory mediators through modulating related pathways, predominantly the nuclear factor-κB (NF-κB) signaling pathway. In this review, we discuss the anti-inflammatory properties of diosmetin in cellular and animal models of various inflammatory diseases for the first time. We have identified some deficiencies in current research and offer suggestions for further advancement. In conclusion, accumulating evidence so far suggests a very important role for diosmetin in the treatment of various inflammatory disorders and suggests it is a candidate worthy of in-depth investigation.


Assuntos
Citrus , Flavonoides , Animais , Humanos , Flavonoides/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Modelos Teóricos
2.
Cancer Med ; 13(6): e7108, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523554

RESUMO

BACKGROUND: The incidence of pancreatic cancer (PC) is higher in diabetic patients due to disturbances in glucose and lipid metabolism caused by insulin resistance (IR). However, the effect of diabetes as well as IR on the prognosis of PC patients remains inconclusive. Our study aims to assess the impact of IR on the prognosis of PC patients with diabetes. METHODS: We conducted a retrospective analysis of 172 PC patients with diabetes in our institute from 2015 to 2021. Prognostic assessment was performed using univariate/multifactorial analysis and survival analysis. The predictive efficacy of metabolic indices was compared using receiver operator characteristic (ROC) curve analysis. RESULTS: One hundred twenty-one of 172 patients died during follow-up, with a median follow-up of 477 days and a median overall survival (OS) of 270 days. Survival analysis showed a significant difference in OS by IR related parameters, which were triglyceride-glucose index (TyG), triglyceride-glucose index-body mass index (TyG-BMI), and triglyceride/high-density lipoprotein cholesterol ratio (TG/HDL-c). The ROC curve indicated that TyG, TyG-BMI, and TG/HDL-c had prognostic efficacy for PC with diabetes. We next optimized TyG-BMI and obtained a new parameter, namely glucose-lipid metabolism index (GLMI), and the patients were classified into GLMI low group and high group based on the calculated cutoff value. The GLMI high group had higher TyG, TyG-BMI, TyG/HDL-c, BMI, TG, total cholesterol (TC), TC/HDL-c, fasting plasma glucose, CA199, and more advanced tumor stage compared to low group. Univariate and multivariate analyses showed that GLMI was an independent prognostic factor. Furthermore, the patients of GLMI high group had worse OS compared to low group and the ROC curves showed GLMI had better predictive ability than TyG and TyG-BMI. CONCLUSIONS: IR is associated with the outcome of PC patients with diabetes and higher level of IR indicates worse prognosis. GLMI has a good predictive value for PC with diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Neoplasias Pancreáticas , Humanos , Glucose , Prognóstico , Glicemia/metabolismo , Estudos Retrospectivos , Biomarcadores , Triglicerídeos , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/diagnóstico , Colesterol
3.
Transl Oncol ; 41: 101877, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262107

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an extremely poor prognosis. Cancer stem cells (CSCs) are considered to be responsible for the poor survival, recurrence and therapy resistance of PDAC. Ferroptosis plays a crucial role in the sustain and survival of CSCs. Here, we employed a rigorous evaluation of multiple datasets to identify a novel stemness-based and ferroptosis-related genes (SFRGs) signature to access the potential prognostic application. This work we retrieved RNA-sequencing and clinical annotation data from the TCGA, ICGC, GTEx and GEO database, and acquired 26 stem cell gene sets and 259 ferroptosis genes from StemChecker database and FerrDb database, respectively. Based on consensus clustering and ssGSEA analysis, we identified two expression patterns of CSCs traits (C1 and C2). Then, WGCNA analysis was implemented to screen out hub module genes correlated with stemness. Furthermore, differential expression analysis, Pearson correlation analysis, and the Least absolute shrinkage and selection operator (LASSO) and Cox regression were performed to identify the SFRGs and to construct model. In addition, the differences in prognosis, tumor microenvironment (TME) components and therapy responses were evaluated between two risk groups. Finally, we verified the most influential marker ARNTL2 experimentally by western blot, qRT-PCR, sphere formation assay, mitoscreen assay, intracellular iron concentration determination and MDA determination assays. In conclusion, we developed a stemness-based and ferroptosis-related prognostic model, which could help predict overall survival for PDAC patients. Targeting ferroptosis may be a promising therapeutic strategy to inhibit PDAC progression by suppressing CSCs.

4.
Front Pharmacol ; 14: 1284610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084101

RESUMO

Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9) screening is a simple screening method for locating loci under specific conditions, and it has been utilized in tumor drug resistance research for finding potential drug resistance-associated genes. This screening strategy has significant implications for further treatment of malignancies with acquired drug resistance. In recent years, studies involving genome-wide CRISPR/Cas9 screening have gradually increased. Here we review the recent application of genome-wide CRISPR/Cas9 screening for drug resistance, involving mitogen-activated protein kinase (MAPK) pathway inhibitors, poly (ADP-ribose) polymerase inhibitors (PARPi), alkylating agents, mitotic inhibitors, antimetabolites, immune checkpoint inhibitors (ICIs), and cyclin-dependent kinase inhibitors (CDKI). We summarize drug resistance pathways such as the KEAP1/Nrf2 pathway MAPK pathway, and NF-κB pathway. Also, we analyze the limitations and conditions for the application of genome-wide CRISPR/Cas9 screening techniques.

5.
Front Oncol ; 13: 1251561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736551

RESUMO

The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate new tumors is a significant contributor to drug resistance, relapse, and metastasis. Therefore, the targeting of CSCs for treatment is particularly important. Recent studies have demonstrated that CSCs are more susceptible to ferroptosis than non-CSCs, indicating that this could be an effective strategy for treating tumors. Ferroptosis is a type of programmed cell death that results from the accumulation of lipid peroxides caused by intracellular iron-mediated processes. CSCs exhibit different molecular characteristics related to iron and lipid metabolism. This study reviews the alterations in iron metabolism, lipid peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis, and the regulatory mechanisms underlying iron metabolism and ferroptosis. Potential treatment strategies and novel compounds targeting CSC by inducing ferroptosis are also discussed.

6.
Int J Lab Hematol ; 44(4): 759-768, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35441492

RESUMO

INTRODUCTION: Acute graft-versus-host disease (aGVHD) is one of the major complications of allogeneic hematopoietic stem cell transplantation, and the liver, skin, and gastrointestinal tract are the main target organs. The most common type is intestinal aGVHD. Long noncoding RNAs (lncRNAs) have coregulatory functions and participate in a variety of intracellular regulatory processes. We investigated the expression of lncRNAs and their mechanisms in the development of aGVHD. METHODS: The participants included 15 patients with aGVHD and 4 healthy controls (HCs). To generate profiles of abnormally expressed lncRNAs, peripheral blood mononuclear cell (PBMC) lncRNAs from four patients and four HCs were validated by high-throughput sequencing and quantitative real-time-PCR (qRT-PCR). A number of databases, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, miRanda, TargetScan, and Metascape, were used for bioinformatics analysis. Bioinformatics analysis indicated that overexpression of lnc-AC145676.2.1-6-3 might induce aGVHD via the interleukin (IL)-1ß axis and a downstream miRNA. After the higher levels of lnc-AC145676.2.1-6-3 in other patients were confirmed by qRT-PCR, serum IL-1ß, IL-6, and tumor necrosis factor-α were measured by enzyme linked immunosorbent assays. RESULTS: In our study, a large number of lncRNAs were found in PBMCs of patients with intestinal aGVHD, and bioinformatics analysis showed that the upregulated lncRNA lnc-AC145676.2.1-6-3 probably affected the progression of intestinal aGVHD by regulating the hsa-miR-3064-5p/IL-1ß axis. In addition, the changes in lncRNA expression levels were positively correlated with the clinical characteristics of intestinal aGVHD. CONCLUSION: Our results suggest that lncRNAs in PBMCs may become new biomarkers and therapeutic targets for intestinal aGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , RNA Longo não Codificante , Doença Aguda , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Interleucina-1beta/genética , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , RNA Longo não Codificante/genética
7.
Front Endocrinol (Lausanne) ; 13: 1067648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589798

RESUMO

Introduction: Embryo implantation failure leads to infertility. As an important approach to regulate implantation, endometrial epithelial cells produce and secrete factors apically into the uterine cavity in the receptive phase to prepare the initial blastocyst adhesion and implantation. Organoids were recently developed from human endometrial epithelium with similar apical-basal polarity compared to endometrial gland making it an ideal model to study endometrial epithelial secretions. Methods: Endometrial organoids were established using endometrial biopsies from women with primary infertility and normal fertility. Fertile and infertile organoids were treated with hormones to model receptive phase of the endometrial epithelium and intra-organoid fluid (IOF) was collected to compare the apical protein secretion profile and function on trophoblast cell adhesion. Results: Our data show that infertile organoids were dysregulated in their response to estrogen and progesterone treatment. Proteomic analysis of organoid apical secretions identified 150 dysregulated proteins between fertile and infertile groups (>1.5-fold change). Trophoblast progenitor spheroids (blastocyst surrogates) treated with infertile organoid apical secretions significantly compromised their adhesion to organoid epithelial cell monolayers compared to fertile group (P < 0.0001). Discussion: This study revealed that endometrial organoid apical secretions alter trophoblast cell adhesiveness relative to fertility status of women. It paves the way to determine the molecular mechanisms by which endometrial epithelial apical released factors regulate blastocyst initial attachment and implantation.


Assuntos
Infertilidade Feminina , Trofoblastos , Humanos , Feminino , Trofoblastos/metabolismo , Proteômica , Endométrio/metabolismo , Útero/metabolismo , Infertilidade Feminina/metabolismo , Proteínas/metabolismo
8.
Oncol Lett ; 18(5): 5185-5196, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31612029

RESUMO

The high mortality rate of lung squamous cell carcinoma (LUSC) is in part due to the lack of early detection of its biomarkers. The identification of key molecules involved in LUSC is therefore required to improve clinical diagnosis and treatment outcomes. The present study used the microarray datasets GSE31552, GSE6044 and GSE12428 from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted to construct the protein-protein interaction network of DEGs and hub genes module using STRING and Cytoscape. The 67 DEGs identified consisted of 42 upregulated genes and 25 downregulated genes. The pathways predicted by KEGG and GO enrichment analyses of DEGs mainly included cell cycle, cell proliferation, glycolysis or gluconeogenesis, and tetrahydrofolate metabolic process. Further analysis of the University of California Santa Cruz and ONCOMINE databases identified 17 hub genes. Overall, the present study demonstrated hub genes that were closely associated with clinical tissue samples of LUSC, and identified TYMS, CCNB2 and RFC4 as potential novel biomarkers of LUSC. The findings of the present study contribute to an improved understanding of the molecular mechanisms of carcinogenesis and progression of LUSC, and assist with the identification of potential diagnostic and therapeutic targets of LUSC.

9.
Adv Anat Embryol Cell Biol ; 222: 67-93, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28389751

RESUMO

Among the numerous families of heat shock protein (HSP) that have been implicated in the regulation of reproductive system development and function, those belonging to the 70 kDa HSP family have emerged as being indispensable for male fertility. In particular, the testis-enriched heat shock 70 kDa protein 2 (HSPA2) has been shown to be critical for the progression of germ cell differentiation during spermatogenesis in the mouse model. Beyond this developmentally important window, mounting evidence has also implicated HSPA2 in the functional transformation of the human sperm cell during their ascent of the female reproductive tract. Specifically, HSPA2 appears to coordinate the remodelling of specialised sperm domains overlying the anterior region of the sperm head compatible with their principle role in oocyte recognition. The fact that levels of the HSPA2 protein in mature spermatozoa tightly correlate with the efficacy of oocyte binding highlight its utility as a powerful prognostic biomarker of male fertility. In this chapter, we consider the unique structural and biochemical characteristics of HSPA2 that enable this heat shock protein to fulfil its prominent roles in orchestrating the morphological differentiation of male germ cells during spermatogenesis as well as their functional transformation during post-testicular sperm maturation.


Assuntos
Células Germinativas/metabolismo , Células Germinativas/fisiologia , Proteínas de Choque Térmico/metabolismo , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Animais , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino , Oócitos/metabolismo , Oócitos/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...